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Abstract--A nonlinear boundary value/initial value problem in two-phase filtration under gravity is solved 
analytically via the application of two successive B~cklund transformations. 

1. INTRODUCTION 

A nonlinear boundary value/initial value problem is presented which describes one-dimensional 
two-phase flow under gravity in a semi-infinite porous medium with zero boundary injection. 
The problem is reduced to a linear boundary value/initial value problem via the application of 
two successive Biicklund transformations and thereby solved analytically. It is noted that an 
analogous boundary value problem without gravitational effects but with constant injection at 
the reservoir boundary has been recently solved by Fokas & Yortsos (1982). 

2. THE MATHEMATICAL MODEL IN TWO-PHASE FILTRATION 

If Sw and So denote, in turn, water and oil saturations where the saturation S of a phase is 
defined as the fraction of the void volume occupied by that phase, then 

s~+ So= l, [1] 

since the two fluids jointly fill the void in the porous medium. 
If qw and qo denote the water and oil flow rates respectively per cross-sectional area of the 

reservoir and ~ is the porosity (assumed constant) of the reservoir, then the conservation laws 
for each phase yield 

8S~ + 8qw ~ _  ~ -  = o, [2] 

c aSo+aqo -o, -~-- [3] 

where ~ and 1- are dimensional space and time measures. 
Darcy's law applied to both phases produces 

rap,, ] 
[4] 

raP° poe], qo = -XoL- - ÷ t5j 
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where the phase mobilities ;~w and ;to are given by 

Aw = kkJ l~ , ,  [6] 

)to = kk,o] lXo [7] 

and po, pw(>po) represent the respective densities (assumed constant) of the two phases. In the 
above, k is the absolute permeability of the reservoir,/~,/~o and P~,, Po denote the viscosity 
and pressure of each phase, while k,~ and k,o denote the relative permeabilities. The quantities 
k,~ and k,o are functions of their respective saturations. In view of the relation[l], we can select 
one saturation, here S = So, to be the single variable on which k,~ and k~o depend. The capillary 
pressure P~(S) is given in terms of P~ and Po via the relation 

Pc = Po - Pw. [8] 

In any water--oil reservoir system such as is considered here, the following monotonicity 
features are apparent (Fokas & Yortsos 1982): 

dk,~ - dk,o - dPc ^ 
< o,-a-g-> u , T # >  u, dS 

[91 

while at the endpoints 

dPc oo k,~ = 1, k~o = 0, ~ - - *  at S = So,rain, 

dPc 
k,~ = 0, k,o = 1,--d~-~ oo at S = So.ma~ = 1 -- S,~.mi., 

[101 

[111 

where the irreducible saturations So,re,, and Sw, m~n are constants of the system and denote the 
least value of the saturation that each phase may adopt. 

3. THE N O N L I N E A R  BOUNDARY V A L U E / I N I T I A L  V A L U E  PROBLEM 

If there is zero injection at the reservoir boundary ~ = 0 of the porous medium occupying 
the region ~ < 0 then at very large and negative ~ it is required that the oil saturation S be 
bounded above by its initial level (assumed constant) S = S-< So.m,x SO that the appropriate 
boundary conditions become 

qo(0, r) = qw(0, ~') = 0, ~- >0  1 
S _ < S a s ~ - ~ , r > 0  J 

[12] 

to which must be adjoined the initial condition 

s(6, 0) = g, 6 <0.  [13] 

Addition of [2] and [3] together with use of [1] and the above boundary condition [1211 
shows that 

qw + qo = 0, [14] 

while [4] and [5] may then be written as 

aPw + [15] 
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and 

0Po qJ~o = - ~  + poe. [16] 

Subtraction of the latter equations and use of [8] now shows that 

/ XoXw ,,raP: -pw)g] [17] 

and insertion of this expression into [3] yields 

OS 1 0 [( AoAw ~OPc -Pw)g}]  0.~'>0. [18] 
a-~ = ~ a-~ L \ ~ / I . - a ~  + (po , ~ < 

Thus, it is required to solve the nonlinear equation [18] subject to the boundary and initial 
conditions []2] and [13] respectively. 

4. THE MODEL LAWS 

In the case of the straight line relative permeability approximations appropriate for water- 
oil systems with negligible inteffacial tensiori 

k,o = S -  So.~.i., [19] 

k,~ = 1 - S~.mi.- S [20] 

so that 

~o),~ kk~,k~ 
(Xo + X~) = (P.~,o + ~ok,~) 

k(S- So,)fl- S~,- S) 
[ p w ( S  - So,) +/~o(1 - S ~ ,  - S ) ]  [ 2 1 ]  

where, we have written 

So,rain ~ Sot, Sw, min ----- Swr, 

If Pc - *(S), then [18] becomes 

aS a [ as ] 
0--~ = 0-~ g(S).-~ + K(S) , [22] 

where 

and 

XoX~ K(S) -- ~(~o + Aw) (Po - P,,,)g. [24] 
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where 

By virtue of [21], 

If we now set 

K(S)= [~(flS+ v) + 8 ] k ( s -  Sor)(pO/zo - pw)g, [251 

8 = izo [261 
~ ( ~ o  - ~w) '  

~oV.w(1 - So, - S~,)  

_ ~ S o , -  ~o(1 -S~ , )  
/3 (~o  - ~w)  

[27] 

[28] 

\~o + ~w/ (flS + ~)2, [291 

then it emerges that not only is reduction of [22] to Burgers' equation with a convective term 
achieved, but also the resultant two-parameter Pc(S) curves exhibit both the required mono- 
tonicity condition[gh and the asymptotic properties at S = So, and S = 1 - Sw, given in[10] and 
[111. 

Thus, [29] yields, on use of [211, 

whence, 

since 

a n d  

1 k (S  - So,)(1 - S~, - S)xIt'(S) = 
[ ~ . ( S  - So, )  + ~ o ( 1  - S . ,  - S ) ]  

1 

*'(S) = ~(~0- ~ )  
f l 2 k ( S -  S o , ) ( S - [ 1 -  S . , ] ) ( S + ~ )  > 0  

~, k > 0, Co > ~w, l 

J S > So. S < 1 - Sw, = So,rex 

S + ~ ---- [lll, w(Soonin - -  S )  + ~ o ( S  - So.max)]/Q.t0 - ~l,w) < O. 

Further, [31] shows that 

[3o1 

[311 

[32] 

[331 

lim ~'(S) = lim 9 '(S) = +oo [34] 
S-., S+o , S ~  l -  S~,)-  
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so that both the required monotonicity and asymptotic endpoint conditions are reproduced in 
the two-parameter PJS)-curves generated by the relation[30] viz: 

)' c ,.~,s,= o,,~o-,..,,.{~s_ So.,.,s-,- s..,,~ (s+-~) }+,, ~,, 
~2k 

where 

o;[(,o,-(,-,..,,(so. , -' (, +;)]-' +~)] ,b = [ ( I -  S~,- So,) - S., 

C:[(~JrSor)(~'}'(1--Swr))] -I [361 

is mapped to 

aS a [ 1 aS f -a ~-8~ k(S- So,)(po-pw)g] 

5. REDUCTION TO CANONICAL FORM VIA A B,~CKLUND TRANSFORMATION 
In what follows, we make use of the following result which generalises an invariance 

property given in Rogers & Shadwick (1982): 
Theorem 

The nonlinear equation 

,s,{ ~ } 
O, at g(S) +K(S) =0, [38] 

, , aS '  , ,}  aS' O + K ( S )  =0 [39] a¥ at' g ( s ) - ~  

under the B~cklund transformation 

as' - 8  aS 
at ~ = (~s + ~? at' 

as' # {g(S) aS+ as a,' ( ,S+  7~ [ - a S "  /3 K(S)} -~] ,  
- -  = ~ ~ (/3s + v)  a t  

[ "  ] dr' = (/3S + 7) dt +/3 g(S) -~  + K(S) d,, 

'T' : T,  

where 

S' = ~ K'(S') = -~K(S) 
(~S + ~)' (I3S + v)' 

g'(S') - (#S + v)2g(S), 

0<l#s+vl<oo. 

[40] 

[411 

[371 

and d is an arbitrary constant of integration. 
Thus, for the two-parameter Pc(S)-curves given by [35], the nonlinear saturation equation 

[22] adopts the form 
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Proof 
It is seen that 

so that 

C ROGERS el .I. 

S' d~' + [g'(S')S'  e, + K'(S)] dr'  = S'[(~S + "y) dr; + [3{g(S)S t + K(S)} de] 

[ - f lg ' (S ' )  ,, + K'(S')]  d r ' =  + d~ 
J 

at' a~' g'(S') ~-~ + K' (S ' )  = O. [] 

Now, in the case of the nonlinear saturation equation [37] 

-[3 [ - a  ] k ( S -  So,)(po - pw)g 
K'(S ' )=( t3S+v)  t3(~-+v)  ~8 . . . .  t,o 

+ 8  t3 

= et'S '2 +/3'S'  + 3,' [42] 

where 

Moreover, 

u' = - u k ( o o  - ow)g + So, , [43] 
/xo 

= ~o ~ +  ~ + So~ [441 

,y, = - ak (Po - Pw)g [45] 
I~o 

g'(S') = S ' -2g (S)  = +1 ,  [461 

so that, under the B~icklund transformation given by [40]-[41], the nonlinear saturation equation 
[37] is mapped to Burgers' equation with a convective term, namely, 

a s - - =  2 , a + 
at '  at  O~ -@7. [47] 

If we now introduce new independent variables ~* and ~'* according to 

~* = ~'+/3'r ' ,  [48] 

r* = r', [491 

then 

a a~ [501 a,r___;_/3 , = a ar*' 

0 0 
a~---; = 0~ ---~ [51] 
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and we obtain reduction of [47] to Burgers' equation, that is, 

OS' O~S ' aS' = ~e--~,~+ 2a'S' [52] 
o~* at  a t *  

6. THE NEW BOUNDARY VALUE/INITIAL VALUE PROBLEM 

Under the B~icklund transformation of the preceding section, the boundary value/initial 
value problem to be solved becomes 

~ S  t 2 t I a s . . . . .  a s  

1 
S' = ~ at ~'* = 0 [53] 

t3~+ v 
1 

S' - ~ as t* ~ -oo (/3 < 0) 

together with the nonlinear boundary condition associated with the zero injection condition 
[12]l. The latter is now examined in detail. 

Thus, [1211 together with [15]-[16] provide the boundary condition 

0 P c  
at  = (p~ - po)g on  t = O, [54] 

leading, on use of Pc = ~F(S), to the-flux condition 

o S  = (p,,, - po)g 
o t  ~ ' ( S )  

[32kg (p~ ( S + ~ ) 
= q,(~o _ ~ )  - p o ) ( S  - s o , ) ( s -  [1 - s~,]) [55] 

o n  

t = 0 .  

Under the Bicklund transformation, the boundary condition [551 becomes 

aS' 
a~' 

k[] - Sw, - S](pw - Oo)gp[S ' -  (v + PSo,)S '2] 

¢ ( ~ o  - ~ )  

k(p,,, - po)g,6 [(1 
y , I 

[56] 

o n  

dr' = [ 3 [ g ( S ) S  e + K(S)] d~- 

= _ 1 [S~ + a 'S a +/3'S' + y'] d~" = [8* -/3'] d1" [57] 

where 

a* = / 3 k O  - Sw, - So,)(m. - po)g(~o + ~,~) 
~(~.o - ~,,,)" 

[58] 
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on 
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Thus, under the further transformation [48]-[49], the boundary condition becomes 

os_'_~k~o.-oo),,~[_(,_~w.+~)~.,.,.,So.)S,~ 
T , I +{(~ + so.)+(,-sw~+-~)}s-~] [59] 

d~* = 3 '  dT*. [60] 

On application of the Cole-Hopf  transformation 

S '=  S*~,l(a'S*), [61] 

the preceding problem may be reduced to consideration of the boundary value/initial value 

problem 

aS* O2S * 
O'r* O~ "z = O, T* > 0 

S* = S*(0) e ~'~*/t~(~+~/~)l at I-* = 0t [62] 

S* ->0 as ~* ~ -=,1-* > 0 (/3 < 0) 

together with 

a' ~ =  (_~**)2 [a'- k(pw- po)gl] (1 -~(p,o Sw,+_ ~w)~) (~' + [3So,)] 

_ ~p.  - po)g,  . a'k(pw-#o)gO (.S_~) [~+ So,+ l_ Sw,] a'2k" 
- ~ , ( ~ o -  ~ )  ~ ( ~ o  - ~) [63] 

o n  

d~* = 3" d~'*. 

But, 

,~(,,.-,,o,,,~(,- s..,-~)(.,.,-.,~So., [ (,-sw.+~)l 
o,- • :,,.-,,o),(~+So,) L - ,  ~ ,,o~o-,/~) ]_~o, ,~(~o - ~,,,) 

so that the boundary condition [63] becomes linear, that is, 

S*,,  = -8*S*~,  - ~*S* on d~* = 3" dl"*, [64] 

tWe subsequently set S*(0) = 1 without loss of generality. 
Moreover, since 

it follows that, for po < p~ 

a <O,5<O,S+~<O 

a F . _  
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where 

e* = a'k(pw - Po)g 
¢ ( ~ o  - ~,,) " 

[651 

SUMMARY 

The nonlinear boundary value/initial value problem 

S=Sat¢=O, 
S _ < $ a s 6 ~ - = , ¢ > 0  

OS {32kg(pw- po)(S- So,)(S-[1- S , . ] ) ( S +  ~ )  

06 4,(~o - ~w) 

on~ = 0 

is mapped, under the transformation 

= S*~* (~S +'~)-~ a'S*' 

d,. = ,,,s + .,> d, + [ ~ S. + ~ {.~= ..+. } k,S - So.,,Oo - , ~  + ,'] d.. 
T* -'-: T 

to the linear boundary value/initial value problem 

aS* O2S* ¢*>0, 

S *  = e a'6*lW(~+~'lls)] at ¢* = O, 

S*~O as 6 " ~  -oo, 1-* >0(/3 <0) 

~S* + 8* + ~*S* = 0 on 6 '  = 8*¢* aq'* 

where 

fo ~ 
6 '  = ( /3S(o, ,  ¢) + ,/) da + 8'~', 

and the two-parameter Pc(S) laws are as given by [35]. 
If we now set 

so that 

= 6" - 8 " ¢ * ,  

t = ¢*, 

0 0 

0._0_= 0 _ 8  , 0 
0¢* Ot -~' 

[66] 

[67] 

[ 6 8 ]  

[69] 

[70] 

[7Z] 

[721 

[731 
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then the boundary value/initial value problem becomes 

OS*_ 0 2 S * + . ,  aS* 

S *  = e a'~/t0(~+v'la)] at t = 0, 

S*-~0 as ~ - o o ,  t > 0  (/3 <0) ,  

OS* 
+ ~*S* = 0 on ~ = 0. 

at 

[74] 

Once this boundary value/initial value problem has been solved for S* -= ~(~, t) then S(~, ~') 
is given parametrically via the relations 

S = / 3  ~¢  /3' ~ = {~,,(o., t ) / [~ '~]}  do', t = ,r. [75] 

7. SOLUTION OF THE CANONICAL BOUNDARY VALUE PROBLEM 

Application to [74], of a Laplace transformation with respect to t yields, on use of the initial 
condition [74]2, 

S~ + 8"S~ - sS = - e ~'~/t~(~+~/~)l, [76] 

where 

Now, [74]3 requires 

while [74]4 gives: 

~(g, s) = e -s' S*(g, t) dt. [771 

bounded as ~ --, -oo [781 

5(0, s) = 1 s + e - - - ' -~ '  [79] 

The general solution of [76] is 

~(~, s) = A(s)  e <-''+ *'dbT~+~)~t2 + B(s) e ( - 8 " - ~ ' ~  +e-~'~ 
[s - (fl*'~- tl*a*)]'  

[80] 

where the boundedness condition [78] is guaranteed by the fact that 

i 
O/ 

t3" > 0 [81] 

provided, in addition, B(s)- O. It is recalled that it was shown in preceding section that the 

condition [81] holds automatically for po < pw. 
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In order to satisfy [79], we need 

1 1 
A(s) = (s + ,~*) [s - ( / ] * ~ - / ] ' 8 " ) ] '  

so that 

Now, 

and 

[82] 

I 1 ] e ( _ S . / 2 + ~ [  +e -~*[ 
~(~, s) = s + ~* [s - ( / ] *~ - / ] * ,~ * ) ]  [s - ( / ] * ~ - / ] * a * ) ] "  

[83] 

LF' t,r-m-1 e ' ~ l  - e-'" [ e - ~  Eric ( -  2-'~ + ''~/8.''4-'* ) +  .* J - 

+ e ~ Erfc (-  2-~- t Im-~/8'2/4 --' e'*) ] [s4] 

[ 1 e C ~ ]  _ o(~.2-~,a*) r - ° ~ Le-~,,..~-o.,~rfc t ¢ + ta2 /] , )t , , , )  L ; - ' L [ s _ ( / ] , ~  / ] ,a . ) ]  j -  \ - 2 - / m  \ T -  

+ e~(a*n-#*' Effc ( -  2-{m- ( - ~ - / ] * )  t'r2) ] [85] 

while 

e-8*c l e-~*[+(°*2-B*a*)t 
Lt-I [Is - (/],2_ /]*8*)].[ = [86] 

Thus, 

~.~. ,> = ~ 0-,.o-.., [ 0 - ~  ~r,0 ( - ~  +,"~,*',4-,*) 

--~ 0""-'"" [0-""-'"~r,0 ( - ~  ~ ~+ (~-,*)!'°) 
+e-'"~r,0 ( -~ -  (~-,'),"l] 
+ e -~'~÷(~*'-°*a')' - ~(~, t), t > 0, [87] 

Finally, an examination of the asymptotic behaviour of S*ff, t) in [87] as ~-* -oo for finite t 
shows that, for condition [68]3 to be satisfied, it is required that condition [81] hold together 
with 

s* - - / ]k(so.~.-  S o . ~ p . , -  po)e(po + ~w) <-o 
q,(po - ~w) 

[88] 
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In fact, the conditions p~ > po,/3 < 0 ensure that 8* < 0 while condition [81] has already been 
shown to be automatically satisfied for pw > po. 

The solution S(6, ,r) of the original nonlinear initial value/boundary value problem is now 
obtained parametrically from [87] through the relations [75]. 
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