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Abstract—A nonlinear boundary value/initial value problem in two-phase filtration under gravity is solved
analytically via the application of two successive Backlund transformations.

1. INTRODUCTION
A nonlinear boundary value/initial value problem is presented which describes one-dimensional
two-phase flow under gravity in a semi-infinite porous medium with zero boundary injection.
The problem is reduced to a linear boundary value/initial value problem via the application of
two successive Bicklund transformations and thereby solved analytically. It is noted that an
analogous boundary value problem without gravitational effects but with constant injection at
the reservoir boundary has been recently solved by Fokas & Yortsos (1982).

2. THE MATHEMATICAL MODEL IN TWO-PHASE FILTRATION

If S, and S, denote, in turn, water and oil saturations where the saturation S of a phase is
defined as the fraction of the void volume occupied by that phase, then

S, +S,=1, m

since the two fluids jointly fill the void in the porous medium.
If g, and g, denote the water and oil flow rates respectively per cross-sectional area of the
reservoir and ¢ is the porosity (assumed constant) of the reservoir, then the conservation laws

for each phase yield

¢.ai+.a_q_“'=0

ar o ? 2
4S, , 9q, _
¢ B + —az' =0, [3]

where £ and 7 are dimensional space and time measures.
Darcy’s law applied to both phases produces

dw="As [%;“ pwg], (4]

av=—ho| 52+ g ] i5)

95



9 C. ROGERS et ul.
where the phase mobilities A,, and A, are given by

Aw = Kkl fos (61
Ao = kkml’-"() [7]

and p,, p.(>p,) represent the respective densities (assumed constant) of the two phases. In the
above, k is the absolute permeability of the reservoir, u,, p, and P,, P, denote the viscosity
and pressure of each phase, while k,, and k,, denote the relative permeabilities. The quantities
k.. and k,, are functions of their respective saturations. In view of the relation[1], we can select
one saturation, here S = S, to be the single variable on which k,,, and k,, depend. The capiliary
pressure P.(S) is given in terms of P, and P, via the relation

P.=P,- P, (8]
In any water-oil reservoir system such as is considered here, the following monotonicity
features are apparent (Fokas & Yortsos 1982):

dkp dk,, dP,

while at the endpoints
dP,
krw= 11 kro=0,a'§'_>wats= So.mins [10]
=0k =1 9P - —1-§. ..
krw—oy kro"‘ 1, dS —)wats_so,max_ 1 Sw,mlm [11]

where the irreducible saturations S, i, and S, ., are constants of the system and denote the
least value of the saturation that each phase may adopt.

3. THE NONLINEAR BOUNDARY VALUE/INITIAL VALUE PROBLEM
If there is zero injection at the reservoir boundary £ = 0 of the porous medium occupying
the region £ <0 then at very large and negative £ it is required that the oil saturation S be
bounded above by its initial level (assumed constant) S=S=<S, ., so that the appropriate
boundary conditions become

900, 7) = q,(0,7)=0,7> 0} (2]
S=Sas¢-»-»,7>0
to which must be adjoined the initial condition
S(£0)=§, £<0. {13]

Addition of [2] and [3] together with use of {1] and the above boundary condition [12},
shows that

qwt G =0, (14

while {4] and [5] may then be written as

~ 9P
_qwlkw— aé- +ng, [15]
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and

_ 9P,
Gulr, = 3 + pog. [16]

Subtraction of the latter equations and use of [8] now shows that

4, == (225) [ S+, - puig 17

and insertion of this expression into [3] yields

e (e wi e

Thus, it is required to solve the nonlinear equation [18] subject to the boundary and initial
conditions [12] and [13] respectively.

pw)g}], £<0,7>0. [18}

4. THE MODEL LAWS

In the case of the straight line relative permeability approximations appropriate for water—
oil systems with negligible interfacial tension

ko = S ~ So.min» {19]
kpy=1=8,min— S [20]
so that
AAw  _ kkok,,

(Ao 1) - (l"wkm + Iltokrw)
k(S — S, X1 - S,,~ S)

= (S =S.) + ol = Sy = )] (211
where, we have written
So.min = Son Sw,min = Swr-
If P, =W(S), then [18] becomes
3S_3a
B-Eae%+xe) 2]
where
1 A \
2(8) =5 (725) wes) 23]
and
Aok
K(S)= 55225 (o~ ke 24
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By virtue of [21],

—_ —a k(s - Sor)(po - pw)g )
K(§)= [B(BS e 8] ™ ’ (231
where
=——te 2
o ¢(P’o - “’w)’ [ ]
a - — ”‘o"’w(l - Sor _ Swr)
B’ d(tto — pin) [27)

— “‘wsor - ’»"o(l —Aswr').

Y
B (’J‘o - I"w) [28]
If we now set
1/ A, o 1
) <A,, + Aw) V) =Gsry 2

then it emerges that not only is reduction of [22] to Burgers’ equation with a convective term
achieved, but also the resuitant two-parameter P.(S) curves exhibit both the required mono-
tonicity condition[9]; and the asymptotic properties at S=S,, and S = 1- §,, given in[10] and
[11).

Thus, [29] yields, on use of [21],

_1_ k(s _ Sor)(l - swr — S)‘P'(S) = 1 [30]
d’ [I-"w(s - Sor) + P‘o(1 - Swr - S)] 2 l :
8(s+3)
whence,
‘I"(S) = ¢("'0 - “w) " >0 [31]
BK(S - S XS - [1-S,) (S +7)
since
&, k>0, wo > ps (32]
S>Soy,s<1_swr= So.max
and
S+ % = [ Sosmin= )+ Ho(S = Somadll (o = ) <0. (33]
Further, [31] shows that
lim ¥'(S)= lim ¥(S)=+ex (34]
S—»S:, S-(1-8,,,)
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so that both the required monotonicity and asymptotic endpoint conditions are reproduced in
the two-parameter P.(S)-curves generated by the relation[30] viz:

Ps) =2z Eeinf(s - 5,5 -1 -8, (s+3) } 4, 351

where

a= [(S,,, ~(1=5.) (so, +%)]_‘, b= [(1 = Sur=So) (1 Sun +%)]-'

[ o)

and d is an arbitrary constant of integration.
Thus, for the two-parameter P.(S)-curves given by [35], the nonlinear saturation equation
[22] adopts the form

_a_s. = i 1 E —a k(s - Sor)(po _ pw)g
ar 3 [(BS+7)2 3y +{B(BS+ v)“’} o ] 37

5. REDUCTION TO CANONICAL FORM VIA A BACKLUND TRANSFORMATION
In what follows, we make use of the following result which generalises an invariance
property given in Rogers & Shadwick (1982):
Theorem
The nonlinear equation

S
B2 F+ko}=0 (38)
is mapped to
38' a I3 ¥ ! ¥
S - w{ee ik} =0 39

under the Bicklund transformation

' __-B 3 1

28~ (BS+7) o'

S__B [ S, B

o (BS+y)[ o (BS+7){ O i K(s)} ag] [40]
d¢' = (BS + ) d§+B[g(S) §+K(S)]d7,

T =1,

where

=L pysny=—BK(S)
S =B+ K =sryy
g(S) = (BS +7)%&(S), (41)

0<|BS+ y|<e.
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Proof
It is seen that

S'dg + [g’(S')S'fr + K'(S)]dr' = S'UBS +y)dE+ B{g(S)SE + K(S)} d7}
_Bg'(sl) [} 1 [
+[———’(BS+7) S§+K(S)]d1- — d
so that

aS’ a I} r _a__s_’ ' r —_
g r®}=0 0

Now, in the case of the nonlinear saturation equation[37]

QN = —B —a k(s — Sor)(pn - pw)g
K(S)=Gs+v [B(BS+7)+5] o
— ' _E ' k(po—pw)g __1___7__
S b Tt bt 0 BEH
= a:syZ+ BISI+yI [42]
where
- _ak(pc — pw)g Y
T ( T4 s) [43]
ﬁ' — kB(po : pw)g (Ea2+ 6(%+ Sor)) [44]
,_ ~8k(p, ~ pu)g
Y s . [45]
Moreover,
g'(S)=57g(S)=+1, [46]

so that, under the Bicklund transformation given by [40}-{41], the nonlinear saturation equation
[37] is mapped to Burgers’ equation with a convective term, namely,

38’ _9%S', ., 9S8, _,3S
—B?=F€-,T+2a S ‘55'7'*'3 a—§7 [47]

If we now introduce new independent variables ¢* and 7* according to

g* = §!+ BITI, [48]
=1, [49]
then
3 ., 0 _ 8
o Bar = (501
9 _0_ [51]
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and we obtain reduction of [47] to Burgers’ equation, that is,

38" _3%S' ., 88
5—7—*-—@'*2(13 -é-g-; [52]

6. THE NEW BOUNDARY VALUE/INITIAL VALUE PROBLEM

Under the Bicklund transformation of the preceding section, the boundary value/initial
value problem to be solved becomes

L A A

ET—;=5§-£1+2¢!SE§“*',T*>0

S'=—' atr=0 53]
BS +vy

'< 1 * 5 —o0
S_B§+yas§ (B<0)

together with the nonlinear boundary condition associated with the zero injection condition
[12],. The latter is now examined in detail.
Thus, [12], together with [15)}-[16] provide the boundary condition

93_1;2 =(pw— po)g on¢ =0, (54]

leading, on use of P. = ¥(S), to the-flux condition

_‘2§ = (pw - po)g
€  W(S)

__ Bk e e Ve ¥
2 (= NS =S XS 11~ 5] (s+ B) [55]
on

£E=0.

Under the Bicklund transformation, the boundary condition [55] becomes

L’g = k[1 - Swr - S](pw - po)gﬂ[sl — (7 + Bsor)S'Z]

o¢' & (o — p)
= M - — l 12
¢ (ko — pw) [ (1 Sur + ﬂ) (y+BS)S
Y s +M\e L
H{Frs)+(1-5+3)}5-5] el
on
d¢' = Blg(S)S, + K(S) dr
=_$[Sé+ a'S?+ 8'S'+ y'1dr = [6* - B dr (571
where
5% = Bk(l — Swr - Sor)(pw - po)g(ﬂ'o + I-"w) [58]

O, — F"‘:)z
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Thus, under the further transformation [48]-[49], the boundary condition becomes

38 _k(pw—po)8B [ _(;_ ¥ 2
= s - (1-Sw ) G ps

+{(Z+ )+ (1-50+3) s3] (59]

on
de* = 8+ dr*. [60]
On application of the Cole-Hopf transformation
S'= S*.l(a'S¥), [61]
the preceding problem may be reduced to consideration of the boundary value/initial value

problem

aS* 42S*
F-—F;‘o’ *>0

S* = $¥(0) ea'G‘I(B(§+~//B)1 at t* = 0f {62]

S* >0 as £* > —,7% >0 (B <0)

together with

- - hAY
a’-s*—".—_ (gﬂ)z [a,_k(Pw Po)gﬁ(l Sw'+B)(y+BSor)]

S* S* (o — pw)
kg pg8 (S2e) (22, 5 1y, |- o"k(pn = po)g 6
* (b(“’o - l"w) S* B o e ¢("’o - p-w) ’ [ ]
on
dé* =8> dr*.
But,
K(ow = p)gB(1- S+ 2 )(r +85,) , { B (E %)} 0
- - - (14 5)| Z-p B g
« =) (b = P2 {5 PR TRy
so that the boundary condition [63) becomes linear, that is,
S* .= —8*S*..—e*S*ondé* = §* dr¥, [64]

tWe subsequently set $*(0) = 1 without loss of generality.
Moreover, since

a<0,B<0,S+%<0

it follows that, for p, < pw,

akipo~ pg (84 %)

>0.

.
o545 amls+g)
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where

et = a'k(p, — po)g
¢(“'o - p'w) )

SUMMARY
The nonlinear boundary value/initial value problem

S _19[( drw \[0Pc,  _

FRaPeT: [(A.,Hw){a& +(p, pw)g}],§<°,‘r>0,
S=Satr=0,

S<Sas¢>—o,r>0

a5 Bkg(p ~ Po)(S = S XS~ [1-S,]) (s 4 %)
3 . ¢(I"o - ”'w)
oné=0

is mapped, under the transformation

103

(65

1

1 [66]

d¢*=(BS +y)dE+ [GS%’W S; +;%’ {—B(T;SE*-_'T 8} k(S — Sor Xpo ~ pu)g + B’] dr,

*=1

to the linear boundary valuefinitial value problem
aS* _a°s* 1
T
S* = eu'é‘l[ﬁ(§+1lﬁ)] atr*=0,
S*>0asf*> -0, 7*>0(8<0)

* *
g%+8*%§;+e*s*=00n£*=5*7*

where
£
= _L (BS(a, 1)+ y)do + 6*1,

and the two-parameter P (S) laws are as given by [35].
If we now set

{ = g* - 8*7*’

so that

[67]

(68]

[69]

(70]
(71]

{72}

(73}
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then the boundary value/initial value problem becomes

aS* _ 9°S* | ., 3S*
ar = o t >0

S* = g @ HIBGHYBN 51 ¢t —

r
S*~>0as > -, t>0(B <0), 4

*
-a-fT+e*S*=00n{=0.

Once this boundary value/initial value problem has been solved for S* = ®({, t) then S(£, 1)
is given parametrically via the relations

S=%2, pt" f: {®,(0, D'} do, t = 7. 73]

7. SOLUTION OF THE CANONICAL BOUNDARY VALUE PROBLEM

Application to {74}, of a Laplace transformation with respect to t yields, on use of the initial
condition [74],,

S, + 5%, — 5§ = — e~ CBS+vB), 176]
where
S, )= L T e SHY ) dt. (77
Now, {74]; requires
S bounded as s [78]
while [74], gives:
$(0, s) = — (791
The general solution of [76] is
8(0,5) = AGs) eI () sV AT [80]

[s—(B*—pB*s")Y
where the boundedness condition 78] is guaranteed by the fact that

'

o
#(5+5)

provided, in addition, B(s)=0. It is recalled that it was shown in preceding section that the
condition [81] holds automatically for p, < p,.

=—-8*>0 {81]
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In order to satisfy [79], we need

1 1
A= G G- BB 82}
so that
1 SV errivd +e F™
Swo=[Fam IS~(B*2~B*8*)]]°(“2 B v L
Now,
- 1 s+8%24 024"
e ] = [ Bt (-t VIR )
+efVe" <" Erfc (— '2}5”’ - t"’\/m)] [84)
and

_ 1 ¢ R _e(soz—p-s-) —L@*2-8% ( 4 (__ *) lIZ)
,‘[-—_——*zme * ]—-————2 e Erfc Em+ B* )t

[s—(8
while
=g el
Thus,

SHE 1y =g et [ A B (- s+ 1V &)
+ eNa:zM—;-' Erfc (_z_t{m_ V1 /5* 14~ E*)]
_1 eoprsen [ ~t(ee-p) (_ L (§:_ *) 112)
23 e Erfc Et-m+ 3 B t

+e™#" Erfc (—2 f - (%*— B*)t"z)]

+e PR = g1 1), 1> 0. o

Finally, an examination of the asymptotic behaviour of S*({, t) in [87) as { - — for finite ¢

shows that, for condition [68]; to be satisfied, it is required that condition [81] hold together
with

= Bk(somax omln)(Pu £o)8 (1o + Hw) <
or= &(po — pu) 0 1851

MF Vol. 10, No. 1-
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In fact, the conditions p,, > p,, B <0 ensure that §* <0 while condition [81] has already been
shown to be automatically satisfied for p,, > p,.

The solution S(¢, 7) of the original nonlinear initial value/boundary value problem is now
obtained parametrically from [87] through the relations [75].
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